Background Modeling Using Adaptive Cluster Density Estimation for Automatic Human Detection
Abstract
Detection is an inherent part of every advanced automatic tracking system. In this work we focus on automatic detection of humans by enhanced background subtraction. Background subtraction (BS) refers to the process of segmenting moving regions from video sensor data and is usually performed at pixel level. In its standard form this technique involves building a model of the background and extracting regions of the foreground. In this paper, we propose a cluster-based BS technique using a mixture of Gaussians. An adaptive mechanism is developed that allows automated learning of the model parameters. The efficiency of the designed technique is demonstrated in comparison with a pixel-based BS [ZdH06].
- Citation
- BibTeX
Bhaskar, H., Mihaylova, L. & Maskell, S.,
(2007).
Background Modeling Using Adaptive Cluster Density Estimation for Automatic Human Detection.
In:
Herzog, O., Rödiger, K.-H., Ronthaler, M. & Koschke, R.
(Hrsg.),
Informatik 2007 – Informatik trifft Logistik – Band 2.
Bonn:
Gesellschaft für Informatik e. V..
(S. 130-134).
@inproceedings{mci/Bhaskar2007,
author = {Bhaskar, Harish AND Mihaylova, Lyudmila AND Maskell, Simon},
title = {Background Modeling Using Adaptive Cluster Density Estimation for Automatic Human Detection},
booktitle = {Informatik 2007 – Informatik trifft Logistik – Band 2},
year = {2007},
editor = {Herzog, Otthein AND Rödiger, Karl-Heinz AND Ronthaler, Marc AND Koschke, Rainer} ,
pages = { 130-134 },
publisher = {Gesellschaft für Informatik e. V.},
address = {Bonn}
}
author = {Bhaskar, Harish AND Mihaylova, Lyudmila AND Maskell, Simon},
title = {Background Modeling Using Adaptive Cluster Density Estimation for Automatic Human Detection},
booktitle = {Informatik 2007 – Informatik trifft Logistik – Band 2},
year = {2007},
editor = {Herzog, Otthein AND Rödiger, Karl-Heinz AND Ronthaler, Marc AND Koschke, Rainer} ,
pages = { 130-134 },
publisher = {Gesellschaft für Informatik e. V.},
address = {Bonn}
}
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-206-1
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2007
Language: (en)
Content Type: Text/Conference Paper