Inductive Learning of Concept Representations from Library-Scale Bibliographic Corpora
Abstract
Automated research analyses are becoming more and more important as the volume of research items grows at an increasing pace. We pursue a new direction for the analysis of research dynamics with graph neural networks. So far, graph neural networks have only been applied to small-scale datasets and primarily supervised tasks such as node classification. We propose to use an unsupervised training objective for concept representation learning that is tailored towards bibliographic data with millions of research papers and thousands of concepts from a controlled vocabulary. We have evaluated the learned representations in clustering and classification downstream tasks. Furthermore, we have conducted nearest concept queries in the representation space. Our results show that the representations learned by graph convolution with our training objective are comparable to the ones learned by the DeepWalk algorithm. Our findings suggest that concept embeddings can be solely derived from the text of associated documents without using a lookup-table embedding. Thus, graph neural networks can operate on arbitrary document collections without re-training. This property makes graph neural networks useful for the analysis of research dynamics, which is often conducted on time-based snapshots of bibliographic data.
- Citation
- BibTeX
Galke, L., Melnychuk, T., Seidlmayer, E., Trog, S., Förstner, K. U., Schultz, C. & Tochtermann, K.,
(2019).
Inductive Learning of Concept Representations from Library-Scale Bibliographic Corpora.
In:
David, K., Geihs, K., Lange, M. & Stumme, G.
(Hrsg.),
INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft.
Bonn:
Gesellschaft für Informatik e.V..
(S. 219-232).
DOI: 10.18420/inf2019_26
@inproceedings{mci/Galke2019,
author = {Galke, Lukas AND Melnychuk, Tetyana AND Seidlmayer, Eva AND Trog, Steffen AND Förstner, Konrad U. AND Schultz, Carsten AND Tochtermann, Klaus},
title = {Inductive Learning of Concept Representations from Library-Scale Bibliographic Corpora},
booktitle = {INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft},
year = {2019},
editor = {David, Klaus AND Geihs, Kurt AND Lange, Martin AND Stumme, Gerd} ,
pages = { 219-232 } ,
doi = { 10.18420/inf2019_26 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Galke, Lukas AND Melnychuk, Tetyana AND Seidlmayer, Eva AND Trog, Steffen AND Förstner, Konrad U. AND Schultz, Carsten AND Tochtermann, Klaus},
title = {Inductive Learning of Concept Representations from Library-Scale Bibliographic Corpora},
booktitle = {INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft},
year = {2019},
editor = {David, Klaus AND Geihs, Kurt AND Lange, Martin AND Stumme, Gerd} ,
pages = { 219-232 } ,
doi = { 10.18420/inf2019_26 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
paper3_03.pdf | 298.7Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2019_26
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/inf2019_26
ISBN: 978-3-88579-688-6
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2019
Language: (en)
Content Type: Text/Conference Paper