Overview of machine learning and data-driven methods in agent-based modeling of energy markets
Abstract
Local energy markets (LEM) allow prosumers and consumers to trade energy directly between each other and offer flexibility services to the grid. The benefits and challenges related to such markets need to be identified, and agent-based modeling (ABM) is a useful method to conduct simulation experiments with different market structures and clearing mechanisms. Machine learning (ML) and data-driven methods when integrated with ABM show great potential for constructing new distributed, agent-level knowledge. In this paper, we discuss the requirements for coupling ML methods and ABM. We also provide an overview of published literature on the common methods of integration of ML and data-driven methods in ABM of energy markets and discuss how these requirements are commonly addressed.
- Citation
- BibTeX
Prasanna, A., Holzhauer, S. & Krebs, F.,
(2019).
Overview of machine learning and data-driven methods in agent-based modeling of energy markets.
In:
David, K., Geihs, K., Lange, M. & Stumme, G.
(Hrsg.),
INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft.
Bonn:
Gesellschaft für Informatik e.V..
(S. 571-584).
DOI: 10.18420/inf2019_73
@inproceedings{mci/Prasanna2019,
author = {Prasanna, Ashreeta AND Holzhauer, Sascha AND Krebs, Friedrich},
title = {Overview of machine learning and data-driven methods in agent-based modeling of energy markets},
booktitle = {INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft},
year = {2019},
editor = {David, Klaus AND Geihs, Kurt AND Lange, Martin AND Stumme, Gerd} ,
pages = { 571-584 } ,
doi = { 10.18420/inf2019_73 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Prasanna, Ashreeta AND Holzhauer, Sascha AND Krebs, Friedrich},
title = {Overview of machine learning and data-driven methods in agent-based modeling of energy markets},
booktitle = {INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft},
year = {2019},
editor = {David, Klaus AND Geihs, Kurt AND Lange, Martin AND Stumme, Gerd} ,
pages = { 571-584 } ,
doi = { 10.18420/inf2019_73 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
paper6_06.pdf | 208.2Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2019_73
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/inf2019_73
ISBN: 978-3-88579-688-6
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2019
Language: (en)
Content Type: Text/Conference Paper