Automated Learning of Pedestrian Walking Speed Profiles for Improved Movement Prediction
Author:
Abstract
Every year, about 310,500 pedestrians still lose their lives in traffic accidents worldwide. Cooperative pedestrian collision avoidance represents a promising approach to reduce those accident numbers. This approach assumes that pedestrians are equipped with mobile devices to obtain and exchange their current movement information with nearby vehicles and use those to predict and prevent possible collisions. However, the ability to predict collisions between a pedestrian and a vehicle also depends on the assumptions about the pedestrian’s future behavior. One important aspect of those assumptions is a pedestrian’s individual walking pattern, like his common or maximum speed. Thus, learning and applying individual walking speed profiles of pedestrians to improve movement prediction may increase the accuracy of a collision detection algorithm and could, in turn, reduce the probability of missing or erroneously triggering an alarm. In this publication, we propose an approach to learn individual walking speed profiles of a pedestrian based on smartphone Global Navigation Satellite System (GNSS) data and evaluate the ability to predict collisions based on those profiles. Therefore, we first conducted experiments to estimate the error of walking speed obtained from smartphone GNSS. Second, using our Pedestrian Monitor application, we recorded real-world walking speed information from nine participants. Based on these data, we show that individually learned walking speed profiles are able to increase the accuracy of predicting an impending collision.
- Citation
- BibTeX
Morold, M., Bachmann, M., Mathuseck, L. & David, K.,
(2019).
Automated Learning of Pedestrian Walking Speed Profiles for Improved Movement Prediction.
In:
Draude, C., Lange, M. & Sick, B.
(Hrsg.),
INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge).
Bonn:
Gesellschaft für Informatik e.V..
(S. 209-218).
DOI: 10.18420/inf2019_ws24
@inproceedings{mci/Morold2019,
author = {Morold, Michel AND Bachmann, Marek AND Mathuseck, Lars AND David, Klaus},
title = {Automated Learning of Pedestrian Walking Speed Profiles for Improved Movement Prediction},
booktitle = {INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge)},
year = {2019},
editor = {Draude, Claude AND Lange, Martin AND Sick, Bernhard} ,
pages = { 209-218 } ,
doi = { 10.18420/inf2019_ws24 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Morold, Michel AND Bachmann, Marek AND Mathuseck, Lars AND David, Klaus},
title = {Automated Learning of Pedestrian Walking Speed Profiles for Improved Movement Prediction},
booktitle = {INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge)},
year = {2019},
editor = {Draude, Claude AND Lange, Martin AND Sick, Bernhard} ,
pages = { 209-218 } ,
doi = { 10.18420/inf2019_ws24 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
paper04_04.pdf | 193.2Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2019_ws24
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-689-3
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2019
Language: (en)
Content Type: Text/Conference Paper