Early Pedestrian Movement Detection Using Smart Devices Based on Human Activity Recognition
Author:
Abstract
In the future, vulnerable road users (VRUs) such as cyclists and pedestrians will be equipped with smart devices capable of communicating with intelligent vehicles and infrastructure. This allows for cooperation between all traffic participants, such as cooperative intention detection and future trajectory prediction for advanced VRU protection. Smart devices can be used to detect the pedestrians’ intentions to warn approaching vehicles. In this article, we propose a method based on human activity recognition for early pedestrian movement transition detection using smart devices. These movement detections serve as valuable information for pedestrian path prediction and intention detection. We represent the pedestrians’ behavior using four states, i.e., waiting, starting, moving, and stopping. The movement transition detection is modeled as a classification problem and tackled by means of machine learning classifiers. The labels for training the classifier are obtained by evaluation of recorded high-precision head trajectories. We compare two different classification paradigms: A simple support-vector machine with linear kernel and a more complex XGBoost classifier. Our empirical studies with real-world data originating from experiments which 11 test subjects involving 79 different scenes show that we are able to detect movement transitions robust and early, reaching an F1-score of 85%.
- Citation
- BibTeX
Botache, D., Dandan, L., Bieshaar, M. & Sick, B.,
(2019).
Early Pedestrian Movement Detection Using Smart Devices Based on Human Activity Recognition.
In:
Draude, C., Lange, M. & Sick, B.
(Hrsg.),
INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge).
Bonn:
Gesellschaft für Informatik e.V..
(S. 229-238).
DOI: 10.18420/inf2019_ws26
@inproceedings{mci/Botache2019,
author = {Botache, Diego AND Dandan, Liu AND Bieshaar, Maarten AND Sick, Bernhard},
title = {Early Pedestrian Movement Detection Using Smart Devices Based on Human Activity Recognition},
booktitle = {INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge)},
year = {2019},
editor = {Draude, Claude AND Lange, Martin AND Sick, Bernhard} ,
pages = { 229-238 } ,
doi = { 10.18420/inf2019_ws26 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Botache, Diego AND Dandan, Liu AND Bieshaar, Maarten AND Sick, Bernhard},
title = {Early Pedestrian Movement Detection Using Smart Devices Based on Human Activity Recognition},
booktitle = {INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik – Informatik für Gesellschaft (Workshop-Beiträge)},
year = {2019},
editor = {Draude, Claude AND Lange, Martin AND Sick, Bernhard} ,
pages = { 229-238 } ,
doi = { 10.18420/inf2019_ws26 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
paper04_06.pdf | 422.4Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2019_ws26
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-689-3
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2019
Language: (en)
Content Type: Text/Conference Paper