Understanding Perceptual Bias in Machine Vision Systems
Abstract
Machine vision systems based on deep convolutional neural networks are increasingly utilized in digital humanities projects, particularly in the context of art-historical and audiovisual data. As research has shown, such systems are highly susceptible to bias. We propose that this is not only due to their reliance on biased datasets but also because their perceptual topology, their specific way of representing the visual world, gives rise to a new class of bias that we call perceptual bias. Perceptual bias, we argue, affects almost all currently available “off-the-shelf” machine vision systems, and is thus especially relevant for digital humanities applications, which often rely on such systems for hypothesis building. We evaluate the nature and scope of perceptual bias by means of a close reading of a visual analytics technique called “feature visualization” and propose to understand the development of critical visual analytics techniques as an important (digital) humanities challenge, situated at the interface of computer science and visual studies.
- Citation
- BibTeX
Offert, F. & Bell, P.,
(2021).
Understanding Perceptual Bias in Machine Vision Systems.
In:
Reussner, R. H., Koziolek, A. & Heinrich, R.
(Hrsg.),
INFORMATIK 2020.
Gesellschaft für Informatik, Bonn.
(S. 1295-1305).
DOI: 10.18420/inf2020_121
@inproceedings{mci/Offert2021,
author = {Offert, Fabian AND Bell, Peter},
title = {Understanding Perceptual Bias in Machine Vision Systems},
booktitle = {INFORMATIK 2020},
year = {2021},
editor = {Reussner, Ralf H. AND Koziolek, Anne AND Heinrich, Robert} ,
pages = { 1295-1305 } ,
doi = { 10.18420/inf2020_121 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
author = {Offert, Fabian AND Bell, Peter},
title = {Understanding Perceptual Bias in Machine Vision Systems},
booktitle = {INFORMATIK 2020},
year = {2021},
editor = {Reussner, Ralf H. AND Koziolek, Anne AND Heinrich, Robert} ,
pages = { 1295-1305 } ,
doi = { 10.18420/inf2020_121 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2020_121
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/inf2020_121
ISBN: 978-3-88579-701-2
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language: (en)