Proof of Concept: Automatic Type Recognition
Abstract
The type used to print an early modern book can give scholars valuable information about the time and place of its production as well as its producer. Recognizing such type is currently done manually using both the character shapes of 'M' or 'Qu' and the size of the total type to look it up in a large reference work. This is a reliable method, but it is also slow and requires specific skills. We investigate the performance of type classification and type retrieval using a newly created dataset consisting of easy and difficult types used in early printed books. For type classification, we rely on a deep Convolutional Neural Network (CNN) originally used for font-group classification while we use a common writer identification method for the retrieval case. We show that in both scenarios, easy types can be classified/retrieved with a high accuracy while difficult cases are indeed difficult.
- Citation
- BibTeX
Christlein, V., Weichselbaumer, N., Limbach, S. & Seuret, M.,
(2021).
Proof of Concept: Automatic Type Recognition.
In:
Reussner, R. H., Koziolek, A. & Heinrich, R.
(Hrsg.),
INFORMATIK 2020.
Gesellschaft für Informatik, Bonn.
(S. 1307-1316).
DOI: 10.18420/inf2020_122
@inproceedings{mci/Christlein2021,
author = {Christlein, Vincent AND Weichselbaumer, Nikolaus AND Limbach, Saskia AND Seuret, Mathias},
title = {Proof of Concept: Automatic Type Recognition},
booktitle = {INFORMATIK 2020},
year = {2021},
editor = {Reussner, Ralf H. AND Koziolek, Anne AND Heinrich, Robert} ,
pages = { 1307-1316 } ,
doi = { 10.18420/inf2020_122 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
author = {Christlein, Vincent AND Weichselbaumer, Nikolaus AND Limbach, Saskia AND Seuret, Mathias},
title = {Proof of Concept: Automatic Type Recognition},
booktitle = {INFORMATIK 2020},
year = {2021},
editor = {Reussner, Ralf H. AND Koziolek, Anne AND Heinrich, Robert} ,
pages = { 1307-1316 } ,
doi = { 10.18420/inf2020_122 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2020_122
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/inf2020_122
ISBN: 978-3-88579-701-2
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language: (en)