Complexity Analysis of Task Dependencies in an Artificial Hormone System
Abstract
The Artificial Hormone System (AHS) is a self-organizing tool able to allocate tasks in a distributed system. We extend the AHS in this paper by negator hormones to enable conditional task structures and provide a thorough complexity analysis of the resulting system. The analysis shows that the problem to decide if a given task A is instantiated at all respecting the negators is NP-complete.
- Citation
- BibTeX
Hutter, E., Pacher, M. & Brinkschulte, U.,
(2021).
Complexity Analysis of Task Dependencies in an Artificial Hormone System.
In:
Reussner, R. H., Koziolek, A. & Heinrich, R.
(Hrsg.),
INFORMATIK 2020.
Gesellschaft für Informatik, Bonn.
(S. 987-994).
DOI: 10.18420/inf2020_92
@inproceedings{mci/Hutter2021,
author = {Hutter, Eric AND Pacher, Mathias AND Brinkschulte, Uwe},
title = {Complexity Analysis of Task Dependencies in an Artificial Hormone System},
booktitle = {INFORMATIK 2020},
year = {2021},
editor = {Reussner, Ralf H. AND Koziolek, Anne AND Heinrich, Robert} ,
pages = { 987-994 } ,
doi = { 10.18420/inf2020_92 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
author = {Hutter, Eric AND Pacher, Mathias AND Brinkschulte, Uwe},
title = {Complexity Analysis of Task Dependencies in an Artificial Hormone System},
booktitle = {INFORMATIK 2020},
year = {2021},
editor = {Reussner, Ralf H. AND Koziolek, Anne AND Heinrich, Robert} ,
pages = { 987-994 } ,
doi = { 10.18420/inf2020_92 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
C20-15.pdf | 239.3Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2020_92
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/inf2020_92
ISBN: 978-3-88579-701-2
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language: (en)