Computational Challenges for Artificial Intelligence and Machine Learning in Environmental Research
Abstract
In the last decades, environmental research has started to adopt a data-driven perspective enabled by huge sensor networks, satellite-based Earth observation, and almost ubiquitous Internet access. Some of these data-driven approaches are expected to make visions of a sustainable future come true. For example, by enabling societies to live in sustainable smart cities, or to feed the world with precision agriculture. Or by fighting environmental pollution or global deforestation with increased observational power. However, there is a serious gap between some of the current expectations put into data-driven techniques and the maturity of the field of spatial machine learning and artificial intelligence or computer science in general. We give a few examples of open research issues that computer science has to solve in order to make data-driven approaches to environmental sciences successful.
- Citation
- BibTeX
Werner, M., Dax, G. & Laass, M.,
(2021).
Computational Challenges for Artificial Intelligence and Machine Learning in Environmental Research.
In:
Reussner, R. H., Koziolek, A. & Heinrich, R.
(Hrsg.),
INFORMATIK 2020.
Gesellschaft für Informatik, Bonn.
(S. 1009-1017).
DOI: 10.18420/inf2020_95
@inproceedings{mci/Werner2021,
author = {Werner, Martin AND Dax, Gabriel AND Laass, Moritz},
title = {Computational Challenges for Artificial Intelligence and Machine Learning in Environmental Research},
booktitle = {INFORMATIK 2020},
year = {2021},
editor = {Reussner, Ralf H. AND Koziolek, Anne AND Heinrich, Robert} ,
pages = { 1009-1017 } ,
doi = { 10.18420/inf2020_95 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
author = {Werner, Martin AND Dax, Gabriel AND Laass, Moritz},
title = {Computational Challenges for Artificial Intelligence and Machine Learning in Environmental Research},
booktitle = {INFORMATIK 2020},
year = {2021},
editor = {Reussner, Ralf H. AND Koziolek, Anne AND Heinrich, Robert} ,
pages = { 1009-1017 } ,
doi = { 10.18420/inf2020_95 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2020_95
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/inf2020_95
ISBN: 978-3-88579-701-2
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2021
Language: (en)