Show simple item record

dc.contributor.authorLam, Wing
dc.contributor.authorWinter, Stefan
dc.contributor.authorWei, Anjiang
dc.contributor.authorXie, Tao
dc.contributor.authorMarinov, Darko
dc.contributor.authorBell, Jonathan
dc.contributor.editorGrunske, Lars
dc.contributor.editorSiegmund, Janet
dc.contributor.editorVogelsang, Andreas
dc.date.accessioned2022-01-19T12:56:53Z
dc.date.available2022-01-19T12:56:53Z
dc.date.issued2022
dc.identifier.isbn978-3-88579-714-2
dc.identifier.issn1617-5468
dc.identifier.urihttp://dl.gi.de/handle/20.500.12116/37970
dc.description.abstractFlaky tests that non-deterministically pass or fail without any code changes constitute an impediment to regression testing. To understand when and how flaky tests can be detected most efficiently, we analyzed the commit histories of known flaky tests. We find that 75% of flaky tests are flaky when added, indicating substantial value for developers to run detectors specifically on newly added tests. The percentage of flaky tests that can be detected early increases to 85% when detectors are run on both newly added and directly modified tests.en
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofSoftware Engineering 2022
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-320
dc.subjectFlaky Tests
dc.subjectRegression Testing
dc.titleA Large-Scale Longitudinal Study of Flaky Testsen
dc.typeText/Conference Paper
dc.pubPlaceBonn
mci.reference.pages57-59
mci.conference.sessiontitleWissenschaftliches Hauptprogramm
mci.conference.locationBerlin/Virtuell
mci.conference.date21.-25. Feburar 2022
dc.identifier.doi10.18420/se2022-ws-018


Files in this item

Thumbnail

Show simple item record