GAFAI: Proposal of a Generalized Audit Framework for AI
Abstract
ML based AI applications are increasingly used in various fields and domains. Despite the enormous and promising capabilities of ML, the inherent lack of robustness, explainability and transparency limits the potential use cases of AI systems. In particular, within every safety or security critical area, such limitations require risk considerations and audits to be compliant with the prevailing safety and security demands. Unfortunately, existing standards and audit schemes do not completely cover the ML specific issues and lead to challenging or incomplete mapping of the ML functionality to the existing methodologies. Thus, we propose a generalized audit framework for ML based AI applications (GAFAI) as an anticipation and assistance to achieve auditability. This conceptual risk and requirement driven approach based on sets of generalized requirements and their corresponding application specific refinements as contributes to close the gaps in auditing AI.
- Citation
- BibTeX
Markert, Th., Langer, Fa. & Danos, Va.,
(2022).
GAFAI: Proposal of a Generalized Audit Framework for AI.
In:
Demmler, D., Krupka, D. & Federrath, H.
(Hrsg.),
INFORMATIK 2022.
Gesellschaft für Informatik, Bonn.
(S. 1247-1256).
DOI: 10.18420/inf2022_107
@inproceedings{mci/Markert2022,
author = {Markert,Thora AND Langer,Fabian AND Danos,Vasilios},
title = {GAFAI: Proposal of a Generalized Audit Framework for AI},
booktitle = {INFORMATIK 2022},
year = {2022},
editor = {Demmler, Daniel AND Krupka, Daniel AND Federrath, Hannes} ,
pages = { 1247-1256 } ,
doi = { 10.18420/inf2022_107 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
author = {Markert,Thora AND Langer,Fabian AND Danos,Vasilios},
title = {GAFAI: Proposal of a Generalized Audit Framework for AI},
booktitle = {INFORMATIK 2022},
year = {2022},
editor = {Demmler, Daniel AND Krupka, Daniel AND Federrath, Hannes} ,
pages = { 1247-1256 } ,
doi = { 10.18420/inf2022_107 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
trustai_02.pdf | 157.0Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2022_107
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/inf2022_107
ISBN: 978-3-88579-720-3
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2022
Language: (en)