Fairness in Regression -- Analysing a Job Candidates Ranking System
Abstract
Fairness is one of the pillars of any well-functioning society. Recent law-making in the EU regulates the machine-centered approach and thus increases the necessity for certifiable fairness approaches. In this paper, we adapt previous literature on certifiable fairness in classification systems to a regression model for simplified candidates ranking. This model serves as an illustration for an application that should work fairly even if built upon a biased data set. With our synthetic dataset we are able to analyse the challenges of different fairness notions. Although the fairness training manages to improve the certifiable individual fairness, some of the encoded bias remains. We discuss the challenges we faced, including the selection of suitable parameters and the trade off between accuracy and fairness. We hope to encourage more research into fairness improvement and certification, within and beyond group and individual fairness.
- Citation
- BibTeX
Markert, Ka., Ahouzi, Af. & Debus, Pa.,
(2022).
Fairness in Regression -- Analysing a Job Candidates Ranking System.
In:
Demmler, D., Krupka, D. & Federrath, H.
(Hrsg.),
INFORMATIK 2022.
Gesellschaft für Informatik, Bonn.
(S. 1275-1285).
DOI: 10.18420/inf2022_109
@inproceedings{mci/Markert2022,
author = {Markert,Karla AND Ahouzi,Afrae AND Debus,Pascal},
title = {Fairness in Regression -- Analysing a Job Candidates Ranking System},
booktitle = {INFORMATIK 2022},
year = {2022},
editor = {Demmler, Daniel AND Krupka, Daniel AND Federrath, Hannes} ,
pages = { 1275-1285 } ,
doi = { 10.18420/inf2022_109 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
author = {Markert,Karla AND Ahouzi,Afrae AND Debus,Pascal},
title = {Fairness in Regression -- Analysing a Job Candidates Ranking System},
booktitle = {INFORMATIK 2022},
year = {2022},
editor = {Demmler, Daniel AND Krupka, Daniel AND Federrath, Hannes} ,
pages = { 1275-1285 } ,
doi = { 10.18420/inf2022_109 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
trustai_04.pdf | 212.0Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2022_109
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/inf2022_109
ISBN: 978-3-88579-720-3
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2022
Language: (en)