Towards Model-Driven Engineering for Quantum AI
Author:
Abstract
Over the past decade, Artificial Intelligence (AI) has provided enormous new possibilities and opportunities, but also new demands and requirements for software systems. In particular, Machine Learning (ML) has proven useful in almost every vertical application domain. In the decade ahead, an unprecedented paradigm shift from classical computing towards Quantum Computing (QC), with perhaps a quantum-classical hybrid model, is expected. We argue that the Model-Driven Engineering (MDE) paradigm can be an enabler and a facilitator, when it comes to the quantum and the quantum-classical hybrid applications. This includes not only automated code generation, but also automated model checking and verification, as well as model analysis in the early design phases, and model-to-model transformations both at the design-time and at the runtime. In this paper, the vision is focused on MDE for Quantum AI, particularly Quantum ML for the Internet of Things (IoT) and smart Cyber-Physical Systems (CPS) applications.
- Citation
- BibTeX
Moin, Ar., Challenger, Mo., Badii, At. & Günnemann, St.,
(2022).
Towards Model-Driven Engineering for Quantum AI.
In:
Demmler, D., Krupka, D. & Federrath, H.
(Hrsg.),
INFORMATIK 2022.
Gesellschaft für Informatik, Bonn.
(S. 1121-1131).
DOI: 10.18420/inf2022_95
@inproceedings{mci/Moin2022,
author = {Moin,Armin AND Challenger,Moharram AND Badii,Atta AND Günnemann,Stephan},
title = {Towards Model-Driven Engineering for Quantum AI},
booktitle = {INFORMATIK 2022},
year = {2022},
editor = {Demmler, Daniel AND Krupka, Daniel AND Federrath, Hannes} ,
pages = { 1121-1131 } ,
doi = { 10.18420/inf2022_95 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
author = {Moin,Armin AND Challenger,Moharram AND Badii,Atta AND Günnemann,Stephan},
title = {Towards Model-Driven Engineering for Quantum AI},
booktitle = {INFORMATIK 2022},
year = {2022},
editor = {Demmler, Daniel AND Krupka, Daniel AND Federrath, Hannes} ,
pages = { 1121-1131 } ,
doi = { 10.18420/inf2022_95 },
publisher = {Gesellschaft für Informatik, Bonn},
address = {}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
giquantum_02.pdf | 6.976Mb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.18420/inf2022_95
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
DOI: 10.18420/inf2022_95
ISBN: 978-3-88579-720-3
ISSN: 1617-5468
xmlui.MetaDataDisplay.field.date: 2022
Language: (en)