GAIT3: An Event-based, RGB and Thermal Gait Database
Abstract
Identifying people by their gait has gained popularity in the last twenty years. Recent gait
recognition methods use acquisitions extracted from advanced sensors such as cameras, depth sensors,
microphones, etc. Recently, event-based cameras, a new family of cameras, are gaining popularity. They are
vision sensors that differ completely from conventional cameras: instead of capturing images at a fixed rate,
they asynchronously measure per-pixel brightness changes generated by moving objects. This motivated
us to use it for individual recognition by gait.
In this paper, we provide means for multimodal gait recognition, by introducing the “Event-based, RGB,
and Thermal Gait” database. This database is the first that contains event-camera acquisition, simultaneously
with conventional RGB and thermal videos. It contains recordings of people in three variations: normal
walking, quick walking, and walking with a backpack.
We also present experiments using a baseline algorithm based on gait energy images adapted to event-based
camera output. Then we present a comparative experiment against RGB and thermal videos, using the
same algorithm, that shows an advantage for event-based data.
- Citation
- BibTeX
, .,
(2022).
GAIT3: An Event-based, RGB and Thermal Gait Database.
In:
Brömme, A., Damer, N., Gomez-Barrero, M., Raja, K., Rathgeb, C., , ., Todisco, M. & Uhl, A.
(Hrsg.),
BIOSIG 2022.
Bonn:
Gesellschaft für Informatik e.V..
(S. 285-292).
DOI: 10.1109/BIOSIG55365.2022.9897039
@inproceedings{mci/
2022,
author = {Mohamed Eddine and Jean-Luc Dugelay},
title = {GAIT3: An Event-based, RGB and Thermal Gait Database},
booktitle = {BIOSIG 2022},
year = {2022},
editor = {Brömme, Arslan AND Damer, Naser AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira Ana F. AND Todisco, Massimiliano AND Uhl, Andreas} ,
pages = { 285-292 } ,
doi = { 10.1109/BIOSIG55365.2022.9897039 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
author = {Mohamed Eddine and Jean-Luc Dugelay},
title = {GAIT3: An Event-based, RGB and Thermal Gait Database},
booktitle = {BIOSIG 2022},
year = {2022},
editor = {Brömme, Arslan AND Damer, Naser AND Gomez-Barrero, Marta AND Raja, Kiran AND Rathgeb, Christian AND Sequeira Ana F. AND Todisco, Massimiliano AND Uhl, Andreas} ,
pages = { 285-292 } ,
doi = { 10.1109/BIOSIG55365.2022.9897039 },
publisher = {Gesellschaft für Informatik e.V.},
address = {Bonn}
}
Dateien | Groesse | Format | Anzeige | |
---|---|---|---|---|
31-BIOSIG_2022_paper_65.pdf | 376.1Kb | View/ |
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1109/BIOSIG55365.2022.9897039
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISBN: 978-3-88579-723-4
ISSN: 1617-5497
xmlui.MetaDataDisplay.field.date: 2022
Language: (en)
Content Type: Text/Conference Paper