Robust visualization of trajectory data
Abstract
The analysis of movement trajectories plays a central role in many application areas, such as traffic management, sports analysis, and collective behavior research, where large and complex trajectory data sets are routinely collected these days. While automated analysis methods are available to extract characteristics of trajectories such as statistics on the geometry, movement patterns, and locations that might be associated with important events, human inspection is still required to interpret the results, derive parameters for the analysis, compare trajectories and patterns, and to further interpret the impact factors that influence trajectory shapes and their underlying movement processes. Every step in the acquisition and analysis pipeline might introduce artifacts or alterate trajectory features, which might bias the human interpretation or confound the automated analysis. Thus, visualization methods as well as the visualizations themselves need to take into account the corresponding factors in order to allow sound interpretation without adding or removing important trajectory features or putting a large strain on the analyst. In this paper, we provide an overview of the challenges arising in robust trajectory visualization tasks. We then discuss several methods that contribute to improved visualizations. In particular, we present practical algorithms for simplifying trajectory sets that take semantic and uncertainty information directly into account. Furthermore, we describe a complementary approach that allows to visualize the uncertainty along with the trajectories.
- Citation
- BibTeX
Zhang, Y., Klein, K., Deussen, O., Gutschlag, T. & Storandt, Sa.,
(2022).
Robust visualization of trajectory data.
it - Information Technology: Vol. 64, No. 4-5.
Berlin:
De Gruyter.
(S. 181-191).
DOI: 10.1515/itit-2022-0036
@article{mci/Zhang2022,
author = {Zhang, Ying AND Klein, Karsten AND Deussen, Oliver AND Gutschlag, Theodor AND Storandt,Sabine},
title = {Robust visualization of trajectory data},
journal = {it - Information Technology},
volume = {64},
number = {4-5},
year = {2022},
,
pages = { 181-191 } ,
doi = { 10.1515/itit-2022-0036 }
}
author = {Zhang, Ying AND Klein, Karsten AND Deussen, Oliver AND Gutschlag, Theodor AND Storandt,Sabine},
title = {Robust visualization of trajectory data},
journal = {it - Information Technology},
volume = {64},
number = {4-5},
year = {2022},
,
pages = { 181-191 } ,
doi = { 10.1515/itit-2022-0036 }
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1515/itit-2022-0036
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISSN: 2196-7032
xmlui.MetaDataDisplay.field.date: 2022
Language:
(en)

Content Type: Text/Journal Article