Predictive End-to-End Enterprise Process Network Monitoring
Abstract
Ever-growing data availability combined with rapid progress in analytics has laid the foundation for the emergence of business process analytics. Organizations strive to leverage predictive process analytics to obtain insights. However, current implementations are designed to deal with homogeneous data. Consequently, there is limited practical use in an organization with heterogeneous data sources. The paper proposes a method for predictive end-to-end enterprise process network monitoring leveraging multi-headed deep neural networks to overcome this limitation. A case study performed with a medium-sized German manufacturing company highlights the method’s utility for organizations.
- Citation
- BibTeX
Oberdorf, F., Schaschek, M., Weinzierl, S., Stein, N., Matzner, M. & Flath, C. M.,
(2023).
Predictive End-to-End Enterprise Process Network Monitoring.
Business & Information Systems Engineering: Vol. 65, No. 1.
Springer.
(S. 49-64).
DOI: 10.1007/s12599-022-00778-4
@article{mci/Oberdorf2023,
author = {Oberdorf, Felix AND Schaschek, Myriam AND Weinzierl, Sven AND Stein, Nikolai AND Matzner, Martin AND Flath, Christoph M.},
title = {Predictive End-to-End Enterprise Process Network Monitoring},
journal = {Business & Information Systems Engineering},
volume = {65},
number = {1},
year = {2023},
,
pages = { 49-64 } ,
doi = { 10.1007/s12599-022-00778-4 }
}
author = {Oberdorf, Felix AND Schaschek, Myriam AND Weinzierl, Sven AND Stein, Nikolai AND Matzner, Martin AND Flath, Christoph M.},
title = {Predictive End-to-End Enterprise Process Network Monitoring},
journal = {Business & Information Systems Engineering},
volume = {65},
number = {1},
year = {2023},
,
pages = { 49-64 } ,
doi = { 10.1007/s12599-022-00778-4 }
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1007/s12599-022-00778-4
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISSN: 1867-0202
xmlui.MetaDataDisplay.field.date: 2023
Content Type: Text/Journal Article
Collections
Related items
Showing items related by title, author, creator and subject.
-
The Impact of Process Visibility on Process Performance
Berner, Martin; Augustine, Jino; Maedche, Alexander
31-42 -
The Use of Process Mining in Business Process Simulation Model Construction
Martin, Niels; Depaire, Benoît; Caris, An
73-87 -
Comparison of business processes and agile software development processes
Eicker, Stefan; Gottschalk, Tim; Nagel, Annett
27-34