AI-Enhanced Hybrid Decision Management
Abstract
The Decision Model and Notation (DMN) modeling language allows the precise specification of business decisions and business rules. DMN is readily understandable by business users involved in decision management. However, as the models get complex, the cognitive abilities of humans threaten manual maintainability and comprehensibility. Proper design of the decision logic thus requires comprehensive automated analysis of e.g., all possible cases the decision shall cover; correlations between inputs and outputs; and the importance of inputs for deriving the output. In the paper, the authors explore the mutual benefits of combining human-driven DMN decision modeling with the computational power of Artificial Intelligence for DMN model analysis and improved comprehension. The authors propose a model-driven approach that uses DMN models to generate Machine Learning (ML) training data and show, how the trained ML models can inform human decision modelers by means of superimposing the feature importance within the original DMN models. An evaluation with multiple real DMN models from an insurance company evaluates the feasibility and the utility of the approach.
- Citation
- BibTeX
Bork, D., Ali, S. J. & Dinev, G. M.,
(2023).
AI-Enhanced Hybrid Decision Management.
Business & Information Systems Engineering: Vol. 65, No. 2.
Springer.
(S. 179-199).
DOI: 10.1007/s12599-023-00790-2
@article{mci/Bork2023,
author = {Bork, Dominik AND Ali, Syed Juned AND Dinev, Georgi Milenov},
title = {AI-Enhanced Hybrid Decision Management},
journal = {Business & Information Systems Engineering},
volume = {65},
number = {2},
year = {2023},
,
pages = { 179-199 } ,
doi = { 10.1007/s12599-023-00790-2 }
}
author = {Bork, Dominik AND Ali, Syed Juned AND Dinev, Georgi Milenov},
title = {AI-Enhanced Hybrid Decision Management},
journal = {Business & Information Systems Engineering},
volume = {65},
number = {2},
year = {2023},
,
pages = { 179-199 } ,
doi = { 10.1007/s12599-023-00790-2 }
}
Sollte hier kein Volltext (PDF) verlinkt sein, dann kann es sein, dass dieser aus verschiedenen Gruenden (z.B. Lizenzen oder Copyright) nur in einer anderen Digital Library verfuegbar ist. Versuchen Sie in diesem Fall einen Zugriff ueber die verlinkte DOI: 10.1007/s12599-023-00790-2
Haben Sie fehlerhafte Angaben entdeckt? Sagen Sie uns Bescheid: Send Feedback
More Info
ISSN: 1867-0202
xmlui.MetaDataDisplay.field.date: 2023
Content Type: Text/Journal Article